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Effects of random potential on transport
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The effects of random potential on the transport of two systems, which are the motion of motor proteins
along a biopolymer and the thermally assisted vortex diffusion in layered high-Tc superconductors, are inves-
tigated, respectively. It is found that the effects of the random potential on the transport process as the
amplitude of random potential increased are much more remarkable than those as the correlation length of
random potential increased. The amplitude and the correlation length of random potential play opposing roles
in the transport of the systems.
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I. INTRODUCTION

The effects of noise on a dynamical system has been s
ied extensively in statics and dynamics. In statics, the no
induced transition has been investigated in the contex
nonequilibrium phenomena@1#. In dynamics, the noise
induced transport has been of growing interest. A numbe
recent attempts to understand broad principles of ene
transduction in nonequilibrium physical and biological sy
tems have focused on correlation ratchet systems which
tract work out of fluctuations which are correlated in tim
@2–8#. It has been demonstrated that time correlated fluc
tions interacting with spatial asymmetry are sufficient con
tions to give rise to transport@2#. On the other hand, it wa
also shown that temporal asymmetric driving~with zero
mean! can operate a correlation ratchet even when the po
tial has spatial symmetry@6#.

The largest amount of work about the noise has been
ferred to the consideration of fluctuations depending on
time, very little work has been done on fluctuations depe
ing on the state variable. Recently, the fluctuations depe
ing on the state variable have been proposed by Dunlap
co-workers@10–12#. They had studied nonlinear mobility o
a classical particle of chargeq and massm moving in an
infinite one-dimensional space spanned by the coordinax,
and subjected to a potentialU(x) with the periodL and an
external electric fieldE, where the potentialU(x) is a ran-
dom stationary potential which depends on the state v
able. The mobility, defined as the ratio of the veloc
of the charge to the fieldE, is given simply in terms
of a finite-space correlation function@11#: C(L,y)
5exp@U(x1y)/kT#exp@2U(x)/kT#, where the overbar
represents an ensemble average over realizations of the
dom potentialU(x). The assumed stationarity of the stocha
tic process underlying the potential ensures that the fin
space correlation function depends only on the differency
in the coordinate values@12#.

According to Ref. @11#, U(x)5U0(x)1h(x), where
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U0(x) is the deterministic part with the periodL andh(x) is
a small fluctuation depending on the state variable and
perposed on the deterministic partU0(x). Considering that
the random parth(x) takes only two values separated b
2D, making discontinuous jumps at random points along
one-dimensional space, andh(x)5D(21)n(x,0), where the
randomness of the functionh(x) has been expressed i
terms of the random functionn(x2 ,x1), which counts the
number of jumps the potential makes between the val
1D and2D in the interval betweenx5x1 andx5x2. The
mean of the random functionn(x2 ,x1) is n(x2 ,x1)5ux2
2x1u/ l , where the correlation lengthl is the mean distance
between jumps. The probability distribution ofn(x,0) is
Poissonian. Above properties ofn(x2 ,x1) allow a straight-
forward calculation of the correlation function for theh(x)
@13#: h(x1)h(x2)5D2 exp(22ux12x2u/ l ) and h(x)50,
then h(x) is called the Dichotomous~Di! potential. There-
fore, the finite-space correlation function is

C~L,y!5Fcosh2S D

kTD2expS 2
2y

l D sinh2S D

kTD G
3E

0

L

expF2
U0~x!2U0~x1y!

kT Gdx. ~1!

Now a question to be raised is how the random potent
influence the transport in some realistic systems, for
stance, the motion of motor proteins along a biopolymer@4#
and the thermally assisted vortex diffusion in layered hig
Tc superconductors@14#. In this Brief Report, we will study
the effects of Di potentials on transport of the two realis
systems. It should be pointed out that although the effect
random potential was considered in Ref.@4#, yet we will
consider both fluctuating force and fluctuating potential
multaneously here. Moreover, the effects of random poten
was not discussed in Ref.@14#.

II. THE MOTOR PROTEINS

For the motor proteins, Astumian and Bier@4# proposed a
motion model of the motor proteins in a periodic piecew
©2001 The American Physical Society01-1
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linear potential, predictions of which are consistent with t
experimental data given by Svobodaet al. @9# for a single
protein molecule moving along a biopolymer. In an ove
damped environment and after scaling the viscosity aw
the motion model of protein molecule can be described
the following Langevin equation in the case of dimensionl
form dx/dt52]U(x,t)/]x1j(t), wherej(t) represents the
Gaussian white noisêj(t)&50 and ^j(t)j(s)&52kTd(t
2s).

The potentialU(x,t) undergoes a fluctuation, two cas
had been respectively discussed in Ref.@4#. One is fluctuat-
ing force]U(x,t)/]x5]U(x,t)/]x1F(t), and the net force
F(t) fluctuates between1DF and2DF in its periodT. The
other is fluctuating barrier ]U(x,t)/]x5]@U(x,t)
1u(x,t)#/]x, and u(x,t) can take the values1Du and
2Du. However, here we consider the two cases simu
neously: ]U(x,t)/]x5]@U0(x)1h(x)#/]x2F(t), where
U0(x) is a periodic piecewise ratchet potential with the b
rier heightQ, the periodL, and the parameterb ~see Fig. 1!.
h(x) is a Di potential, and the termF(t) is a slow forcing of
square wave of amplitudeA with the periodT. In order to get
fluctuation induced flow it is essential that one side is stee
that the other, i.e., that the parameterbÞL/2. Here we take
b.L/2, then the probability fluxJ of the system driven by
the Di potential is given by

J~F !5
kT@12exp~2FL/kT!#

u11u21u31u4
, ~2!

where

u15b cosh2S D

kTD S Q

kTb
2

F

kTD 21

3H expF2S F

kT
2

Q

kTb DLG21J , ~3!

u252b sinh2S D

kTD S 2
F

kT
2

2

l
1

Q

kTb D 21

3H expF2S F

kT
1

2

l
2

Q

kTb DLG21J , ~4!

u352~L2b! cosh2S D

kTD S Q

kT~L2b!
1

F

kTD 21

3H expF2S F

kT
1

Q

kT~L2b! DLG21J , ~5!

FIG. 1. The periodic piecewise ratchet potential.
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u45~L2b!sinh2S D

kTD S F

kT
1

2

l
1

Q

kT~L2b! D
21

3H expF2S F

kT
1

2

l
1

Q

kT~L2b! DLG21J . ~6!

For the slow fluctuationF(t) of square wave of amplitudeA
@2#, the average probability currentJav over the periodT of
the fluctuation Jav5(1/T)*0

TJ@F(t)#dt5(1/2)@J(A)
1J(2A)# can be obtained.

We plot the average probability current versuskT for dif-
ferent values of amplitudeD and correlation lengthl of the
Di potential in Figs. 2 and 3, respectively. The figures sh
that the average probability current is a peaked function
temperature of the bath, thus there is an optimal tempera
for the driving. In addition, the effects of Di potential on th
average probability current are very clearly in the figures,
peak value decreases as the amplitudeD of Di potential is
increased~Fig. 2!, while the peak value increases as the c
relation lengthl of Di potential is increased~Fig. 3!. The
variation of the average probability current as increasing
the amplitudeD of Di potential is much more remarkabl
than that as increasing the correlation lengthl of Di potential.

FIG. 2. The average probability current for Di potential vskT
for various amplitudeD of the Di potential.A50.1, L51, b
50.6, Q50.2, andl 50.2L.

FIG. 3. The average probability current for Di potential vskT
for various correlation lengthl of the Di potential.A50.1, L51,
b50.6, Q50.2, andD50.5kT.
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III. THE VORTEX DIFFUSION IN HIGH- Tc

SUPERCONDUCTORS

For the vortex diffusion in high-Tc superconductors, Che
and Dong@14# used a dynamical equation to study the sin
vortex thermally activated motion in the direction perpe
dicular to the layers as seem to a Brownian particle mov
in a sinusoidal pinning potential, and they showed that
power lawI -V characteristics and continuous crossover fr
flux creep to flux flow in high-Tc superconductors can b
interpreted in a natural way. Under the overdamped situa
~or the effective mass is very small!, the Langevin equation
for a flux line of lengtha in the dimensionless form@14# is
(am)dx/dt52U8(x)1F1j(t), where the pinning poten
tial U(x) is caused by the parallel Cu-O planes (ab planes!,
M is effective mass of the flux line,m is damping constan
and j(t) represents the thermally fluctuating force^j(t)&
50 and^j(t)j(s)&5@2kT/(am)#d(t2s), F5(1/c) if0a is
the driving force withi being electric current density, andf0
as the superconducting flux quantumhc/2e. Here thex axis
is taken along the normal of the planes.

When one assumes that the pinning potentialU(x) is a
random potential U(x)→Up(x)1h(x), where Up(x)
5(a/2)sin(2px/L) @15#, which is a good approximation to
the intrinsic pinning caused by the layered structure when
magnetic fieldH is parallel to the layers,a is the height of
the pinning potential well,L is the period of the distanc
between two planes, and the termh(x) is considered as D
potential. Now the currentJ for the vortex diffusion in high-
Tc superconductors is@14#

J5
kT@12exp~2FL/kT!#

amE
0

L

exp~2Fy/kT!C~L,y!dy

, ~7!

where C(L,y)5L@cosh2(D/kT)2exp
(22y/ l )sinh2(D/kT)#I 0@a sin(py/L)/kT#, andI 0(x) is the
modified Bessel function. Due to the motion of flux lines,
induction electric fieldE can be produced:E5(B/c)^ ẋ&.
Note that the average velocity^ẋ& is related to the currentJ
according tô ẋ&5LJ, and the flux-flow resistivityr0 is r0
5Bf0 /mc2 when there is no pinning. A simple formula o
r0 is given by Bardeen and Stephen@16#: r05rnH/Hc2

with

rn being the normal state resistivity andHc2
being the upper

critical field ~belowHc represents the lower critical field!. If
we introduceE05ckTcrn /f0aL, i 05ckTc /f0aL, and a
reduced temperaturet5T/Tc , then from Eq.~7! we have

E

E0
5

tL2H@12exp~2 i / i 0t!#

Hc2
E

0

L

exp~2 iy / i 0Lt!C~L,y!dy

. ~8!

One can chooses the form of the pinning intensitya @17# as
a5(Hc

2/8p f )jcjab(f0 /B)1/2, wheref is a numeric constan
and is approximately 6@18#, jab and jc are the correlation
lengths inab plane and perpendicular to the plane, resp
tively, and are proportional to (Tc2T)21/2.
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By virtue of Eq.~8!, we can discuss the effects of rando
potentials on the linear log10(E/E0)2 log10( i / i 0) characteris-
tic. The linear characteristic has been plotted for various v
ues of the amplitudesD and the correlation lengthsl of the
Di potential in Figs. 4, 5. When correlation lengthl of ran-
dom potential is fixed, the variation of the linear charact
istic ~see Fig. 4! for increasing the amplitudeD of random
potential is equivalent to that in Ref.@14# for decreasing the
reduced temperature~or for decreasing the temperature of th
system!. It means that increasing the amplitude of rando
potential would make decreasing the temperature of syst
or make the system far away from the transition temperat
On the other hand, when the amplitude of random poten
is fixed, the variation of the linear characteristic~see Fig. 5!
for increasing the correlation lengthl of random potential is
opposite to that in Ref.@14# for decreasing the reduced tem
perature~or for decreasing the temperature of the system!. It
means that increasing the correlation lengthl of random po-
tential would make increasing the temperature of system
make the system closing the transition temperature.

FIG. 4. Calculated electric field vs current density for vario
amplitudes of the Di potential, fromD50.0kT to D52.0kT at
0.5kT intervals. The reduced temperaturet50.99 and the correla-
tion length of the Di potentiall 50.5L. The other parameter value
are given by Ref.@14# ~the same in Fig. 5!.

FIG. 5. Calculated electric field vs current density for vario
correlation lengths of the Di potential:~from right to left! l
50.1L, l 50.5L, 1.0L, 1.5L, and 2.0L. The reduced temperatur
t50.99 and the amplitude of the Di potentialD50.5kT.
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In summary, the effects of Di potential on the transport
motor proteins@4# and vortex diffusion in superconducto
@14# have been discussed by using of the definition of s
chastic potential in Ref.@11#. It has been shown that th
amplitude and the correlation length of Di potential play o
posing roles in the transport of the nonlinear systems
should be pointed out that the random potential could be
ev

tt
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Ornstein-Uhlenbeck~OU! process which is defined by th
infinite sum of Di potentials@11#, one can show that the
effects of the OU potential on the transport are same as th
of Di potential.
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